CUEPAQ: Visual Analytics und Linguistik für Erfassen, Verständnis und Erklärung personalisierter Argumentqualität , Schwerpunktprogramm "RATIO"

Institutionen
  • AG Keim (Data Analysis and Visualization)
Publikationen
  Buchmüller, Raphael; Jäckl, Bastian; Behrisch, Michael; Keim, Daniel A.; Dennig, Frederik L. (2024): cPro: Circular Projections Using Gradient Descent EL-ASSADY, Mennatallah, Hrsg., Hans-Jörg SCHULZ, Hrsg.. EuroVis Workshop on Visual Analytics (EuroVA 2024). Eindhoven: Eurographics, 2024. ISBN 978-3-03868-253-0. Verfügbar unter: doi: 10.2312/eurova.20241111

cPro: Circular Projections Using Gradient Descent

×

Typical projection methods such as PCA or MDS rely on mapping data onto an Euclidean space, limiting the design of resulting visualizations to lines, planes, or cubes and thus may fail to capture the intrinsic non-linear relationships within data, resulting in inefficient use of two-dimensional space. We introduce the novel projection technique -cPro-, which aligns high-dimensional data onto a circular layout. We apply gradient descent, an adaptable optimization technique to efficiently reduce a customized loss function. We use selected distance measures to reduce high data dimensionality and reveal patterns on a two-dimensional ring layout. We evaluate our approach compared to 1D and 2D MDS and discuss further use cases and potential extensions. cPro enables the design of novel visualization techniques that employ semantic distances on a circular layout.

Forschungszusammenhang (Projekte)

  Buchmüller, Raphael; Zymla, Mark-Matthias; Keim, Daniel A.; Butt, Miriam; Sevastjanova, Rita (2024): Exploration of Preference Models using Visual Analytics ARCHAMBAULT, Daniel, Hrsg., Ian NABNEY, Hrsg., Jaakko PELTONEN, Hrsg.. MLVis: Machine Learning Methods in Visualisation for Big Data (2024). Eindhoven: Eurographics, 2024. Verfügbar unter: doi: 10.2312/mlvis.20241127

Exploration of Preference Models using Visual Analytics

×

The identification and integration of diverse viewpoints are key to sound decision-making. This paper introduces a novel Visual Analytics technique aimed at summarizing and comparing perspectives derived from established preference models. We use 2D projection and interactive visualization to explore user models based on subjective preference labels and extracted linguistic features. We then employ a pie-chart-like exploration design to enable the aggregation and simultaneous exploration of diverse preference groupings. The approach allows rotation and slicing interactions of the visual space. We demonstrate the technique's applicability and effectiveness through a use case in exploring the complex landscape of argument preferences. We highlight our designs potential to enhance decision-making processes within diverging preferences through Visual Analytics.

Forschungszusammenhang (Projekte)

Mittelgeber
Name Finanzierungstyp Kategorie Kennziffer
Schwerpunktprogramm Drittmittel Forschungsförderprogramm 531/21
Weitere Informationen
Laufzeit: 22.12.2020 – 21.12.2023