SFB 767 - TP C13 "Mechanische und elektrische Kontrolle des Ladungstransports durch Nanostrukturen"

Description

We study the influence of vibrational modes on the charge current and its fluctuations in atomic and molecular junctions with material-specific ab-initio techniques. Existing theoretical models are extended to include the coupling of the vibrations in the central scattering region to the surrounding electrodes to obtain a realistic description of current-induced heating. Applied to nonmagnetic systems in the first part, the techniques are generalized in the second part to treat noncollinearly magnetic nanostructures. We study the scattering between different transmission and spin channels due to vibrations and naturally take into account multiple electronic levels and vibrational modes. The externally adjustable distance between the electrodes controls precisely electronic couplings and vibrational properties, while magnetic fields provide additional external means for manipulating junctions that contain magnetic atoms or molecules.

Institutions
  • SFB 767 Kontrollierte Nanosysteme
  • FB Physik
  • JP Pauly (Theoretische Physik mit SP Molekulare Elektronik)
Publications
Weber, David (2018): Current-Induced Switching in Superconducting Break Junctions

Current-Induced Switching in Superconducting Break Junctions

×

dc.title:


dc.contributor.author: Weber, David

Origin (projects)

  Guo, Yuning; Dekorsy, Thomas; Hettich, Mike (2017): Topological guiding of elastic waves in phononic metamaterials based on 2D pentamode structures Scientific Reports. 2017, 7(1), 18043. eISSN 2045-2322. Available under: doi: 10.1038/s41598-017-18394-8

Topological guiding of elastic waves in phononic metamaterials based on 2D pentamode structures

×

A topological state with protected propagation of elastic waves is achieved by appropriately engineering a phononic metamaterial based on 2D pentamode structures in silicon. Gapless edge states in the designed structure, which are characterized by pseudospin-dependent transport, provide backscattering-immune propagation of the elastic wave along bend paths. The role of the states responsible for forward and backward transfer can be interchanged by design.

Origin (projects)

Funding sources
Name Project no. Description Period
SFB773/1301.10.2013 – 31.12.2019
Further information
Period: 01.10.2013 – 31.12.2019
Link: Project homepage